Chapter 5

Godel’s 15t Incompleteness Theorem

5.1 Godel Numbers

The idea is the following: intuitively, formulas from arithmetic talk about integers — no mat-
ter whether these are standard or not — we can turn them into formulas that talk about the
arithmetic itself by encoding formulas, proofs, etc. by integers. This way a formula ¢(x) may
say something like “x is the code of a closed formula from our language L4 = {0,5,+,-}" or
Y(x,y) may eventually say “z is the code of a closed formula 0 from our language and y is the
code of a proof of 8 in Robinson arithmetic”.

As always in logic, we start with the terms: given term ¢ we write 't' for its code.
Definition 1.1: G6édel numbering of the L 4-terms

The Godel numbering of the terms from the language whose signature is L4 = {0, 5, +, -}
is

ot = 0 wo = a3(0,0,0)

ot = xy, wo 't = ag(n+1,0,0)
o t = Sty wo = ag('0',0,1)
ot = totty w1 = a3, 1",2)
ot = togty wo t = a3(t’,t,3)

Lemma 1.1

The set T of all codes of terms from £ 4

138 EPFL Godel & Recursivity

T ={"t"|tis aterm from L}
is Prim. Rec.

To almost immediately show this result we need to prove that some stronger form of construction
by recursion still produces Prim. Rec. functions.

Lemma 1.2

For all Prim. Rec. functions h € N(anﬂ),g e NO) Ky, .. k€ NN, such that every

integer y > 0
N\ Fi(y) <y

0<i<p

the function f € N defined by
(1) f(7,0) = 9(T)
2) f(Zy+1) =n(f(T,k1(y),. - [(T, kp(y), Ty, [(T,y))

is also Prim. Rec.

First, notice that the Ackermann function A € N defined by
n+1 if m=0,
A(m,n) =< A(m—1,1) if m>0andn=0,
A(m—1,A(m,n—1)) if m>0 andn>0.

is not of this form for A(m,n — 1) < n certainly does not hold.

Proof of Lemma E

Its characteristic function x,: N — N is defined by:

if B3(k) = 0 and B2(k) = 0 and Bik) = 0 w» xr(k) = 1

if B3(k) = 0 and B3(k) = 0 and Bi(k) > 0 o xs(k) = 1

if B3(k) = 1 and Bi(k) = 0 and B3(k) > 0 o xr(k) = x70p5(k)

if Bik) = 2 wo xr(k) = xr(B3(k)) - xr (B3 (k)
i B3k) = 3 o xr(k) = xr(B3(k)) - xr (B3 (k)
else wo o xr(k) = 0.

Arithmetic 139

By Lemma [1.2] this definition by case study yields a Prim. Rec. function.

Proof of Lemma IE

The idea of the proof is to define by recursion a function that carries each and everyone of
the datas f(77,z) for z < y when defining f(7,y). To achieve this, we make use of the
Prim. Rec. functions ¢ and d that were defined in Example

(1) the function ¢ : N<“ — N codes the finite sequences of integers and is defined by

{6(6) =1
c(xo,...,xp) = H(O)xOJrl.H(l)mlJrl'”H(p)prrl'

(2) And the function d € N that allows, from any integer n, to recover every element
of the sequence (zy, ..., z,) that c encodes (i.e., ¢(zo,...,2,) = n) by

d(i,n) = pz <n TG does not divide n.

We want to define some Prim. Rec. function § € N ™) such that
0(Z,y) = c(f(T,0), [(Z,1),.... [(T,y))
This is easily done by recursion:
(1) 6(Z,0) = 29(F)+1
(2) 0(Z,y+1)=0(T,y) - U(y+ 1)h[d[k1(y))ﬁ(?,y)]7-~7d[kp(y)),9(7,y)]777y,f(7’,y)]+1_
Then, to show that f is also Prim. Rec., it only remains to set

f(Z,y) =dly,0(T,y)] = 1.

Definition 1.2: G6del numbering of the £ 4-formulas

The Godel numbering of the £ 4-formulas is

140 EPFL Godel & Recursivity

p = to=1 w0t = gty T, 4)
¢ = Y wo o ot = ag(T),0,5)

¢ = (vonep1) woo ot = ag(Teo, 01, 6)
Y = (900 Vv <P1) o = 043(:5()1, r>£|1,7)
e = (po—1) > 0 = az(vo’, 01,8)
¢ = (poe—p1) > v = (v, v1,9)
o = Va, ¢ wo o ot = ag(",n, 10)
@ = dx, ¢ wo ot = ag(" n, 11)

Notice that for every formula ¢, we have "' > 0.

Lemma 1.3

The set of all codes of formulas from L 4 is Prim. Rec.

F={"¢"|¢is a formula from L4} € Prim. Rec.

Proof of Lemma E

Its characteristic function x»: N — N is defined by:

if B3(k) = 4 o (k) = xs(B5(k) X (B3 (R))
if B3(k) = 5 and Bi(k) = 0 v~ xz(k) = xroBi(k)

if B3(k) = 6 v xF (k) = xF(B3(R)) - xx (B3 (K))
if B3(k) = 7 o xF(k) = x#(B3(k)) - x=(B5())
if B3(k) = 8 o xx(k) = x#(B3(k)) - x=(B5(K))
if Bi(k) = 9 o xa (k) = xF(B5(R)) X (B3 (R))
if B3(k) = 10 and B5(k) > 0 v~ xz(k) = xroB3(k)

if B3(k) = 11 and B5(k) > 0 v~ xz(k) = xropBi(k)

else wo o xz(k) = 0.

By Lemma [1.2] this definition by case study yields a Prim. Rec. function.

Arithmetic 141

Lemma 1.4

The occurence relation of variables in terms from £ 4
Tro={("t",n) |t is a term from L4 and t contains xy}

is Prim. Rec.

Proof of Lemma E

Its characteristic function xr , : N? — N is defined by:

if B3(k) = 0 and BAK) = 0 and B}(k) = n+l ww xr, (kn) = 1

it Bk = 1 and Bk = 0 o X (k) = xr, (B(K).n)

if Bk = 2 w X (k) = max (xr, (850).), X, (B3(6),m))
if Bk = 3 o X () = max (xr, (BYK),), X, (B3(K),m))
else o X7, (Bin) = 0.

By Lemma this definition by case study yields a Prim. Rec. function.

O
Lemma 1.5
The set
Txo = {("t",n) | t is a term from L4 and t does not contain x,}
is Prim. Rec.
Proof of Lemma E
Its characteristic function xr,, : N2 — N is defined by :
if B3(k) = 0 and B3(k) = 0 and Bi(k) # n+1 v xr, (kn) = 1
if Bi(k) = 1 and Bi(k) = 0 o X7, (kin) = X7, (B3(k).n
if Bik) = 2 o X, (ki) = X7, (B3(K),n) - X7, (B3 (K),0)
if B?(k) = 3 At XTm"(k,n) = XTx (Bﬁ(k),n -an(ﬁg(k),n
else Nt XT”"(k,n) = 0

By Lemma [1.2] this definition by case study yields a Prim. Rec. function.

142 EPFL Godel & Recursivity

O
Lemma 1.6
The set

Fro = {(Y,n) | ¢ is a formula from L4 and ¢ contains xn}

is Prim. Rec.
Proof of Lemma E
Its characteristic function xz,, : N? — N is defined by:
i Ak = 4 o X, (bn) = max (o, (B3(F),n), X7, (B3(0k),))
if Bik) = 5 and B3(k) = 0 wo xr,, (k) = X, (B3(K),n)
if Bk = 6 o X (bn) = max (e, (B5(R),0) X, (B3(R).))
i Bk = 7 o Xy (b)) = max (o, (B),1), X, (B306),1))
Zf 53(7@ = 8 hbied Xf/xn(k7’rl) = Hlax(X}‘/Ml(B%(k)an)7>(f/xn(Bg(k)ﬂn))
if Bk = 9 o Xy () = max (o, (B3(8),1), X, (B300),))
if 53(@ = 10 > X‘F‘/zn(k7,n‘) = XFiap (B}(k),n)
if Bik) = 11 o Xr, (k) = Xr, (B3(K),n)
else v Xre (kyn) = 0.

By Lemma [1.2] this definition by case study yields a Prim. Rec. function.

Lemma 1.7

The set
Fxz = {(rgj,n) | v is a formula from L4 and ¢ does not contain xn}

is Prim. Rec.

Arithmetic 143
Proof of Lemma E

Its characteristic function xz,, : N2 — N is defined by :
if Bi(k) = 4 o Xrn (K1) = X7, © B3(F) - X7, © B3 (K)
if B3(k) = 5 and B3(k) = 0 v~ Xz, (kn) = X, 0B3(k)
if B3k) = 6 o X, (Bi1) = X, ©B3(F) - X, 0 B5(K)
Zf ﬁg(k) = 7 hibe X}_xzn (k7 n) = X}_xzn © Bé (k) : X]'_xzn 5%(]{:)
/I’f lﬁg(k) = 8 b Xfxzn (k’ n) = Xfxzn © 5% (k) : Xfxzn © Bg(k)
if 55’(@ =9 YW X Fran (k,n) = XFray © 5§(k) " XFxan © Bg(k)
if B3(k) = 10 o Xr, (k1) = Xr, 0 B3(K)
else o XE, (Bsn) = 0.

By Lemma [1.2 this definition by case study yields a Prim. Rec. function.

Lemma 1.8

The set

Frz free = {(Y,n) | ¢ is a formula from L4 and x,, is free in go}

is Prim. Rec.
Proof of Lemma E

Its characteristic function xr ,_ e N? — N is defined by:

Godel & Recursivity

144 EPFL
if P3(k)
if - Bik)
if P3(k)
if A3(k)
if B3(k)
if B3(k)
if B3(k)
if B3(k)
else

DI N

By Lemma this definition by case study yields a Prim. Rec. function.

Lemma 1.9

The set

is Prim. Rec.

Proof of Lemma @

we haVe F/$bound :f/l‘ \‘/_-:/:L‘free'

Lemma 1.10

The set of all codes of closed formulas from £ 4

is Prim. Rec.

Fetosea ={ 0" | ¢ is a closed formula from L4}

F o/t vound = {(rgj,n) | ¢ is a formula from L4 and x, is bound in cp}

Arithmetic 145

Proof of Lemma m:

We have
k€ F/uses = keF andn <k (k,n) ¢ F/z e

Lemma 1.11

The function 87, € N&) defined below is Prim. Rec.

e, U mu€T, ne€T andny = "u',ng ="t

SZb. (nwntvn) = {

0 otherwise.

Proof of Lemma m:

We first recall the definition of t":

t =0 o 1 = a3(0,0,0)
t = m, wo 't = as(n+1,0,0)
t = Sty v~ T = as(t,0,1)
t = totty v T = ag(rt()j,rtlj,Q)
t = tot w1 = Oég(rtoj,rtlj,g))
ST, e NO) is defined by
0 if ny T or ng¢T
ng if nu,ne€T and Bi(ny) =0 and P3(ny) =0 and Bi(ny)=n+1

Ty if nuy,mi€T and PBi =0 and Bg ny) =0 and B

- _) ’
S (M 1e,m) = as(ST, (ﬂ%(nu),nf,,n) ,0,1) if ny,ni€T and B3(ny) =1 and Bé

and B3 (1

(1) 3 (1)
3(m) (n) 3(ma)
3 (1) (ny) =0 and Bi(n,)eT
a3(ST,, (BY(nu),ne,n) . ST, (B3(nw),ne,n),2) if nu,mu €T and B3(ny) =2 and B3(nu) €T L(n,)
a3(S, (B3(nu), e, n) , Sy (B3(na)sne,n) 3) if nu,mee T and f3(ny) (n,) €T and Bi(ny)

=3 and f35(ny

By Lemma [1.2(S7, is Prim. Rec.

146 EPFL

Godel & Recursivity

Lemma 1.12

The function S7; € N®™) defined below is Prim. Rec.

Proof of Lemma

87, € NO) ig defined by

Sl (ng,ne,n) =

~

e

and
and
and
and
and
and
and
and
and

and

Sup. (N, ng,m) = { g : |
0 otherwise .
We first recall the definition of "'
p = to="1 ol =
o = ¢ S
p = (pong) v 9 =
e = (pove) v 9=
¢ = (po— 1) v 9 =
¢ = (poe—p1) v p =
¢ = Vzp ¢ s Tt =
¢ = dzn ¢ el =
0 if ng¢F
a3(Shy. (B3(ny),musn) , Shy, (B3(ng),mesn) ,4) if npe F
a3(S%, (Bi(ng),ni,n) ,0,5) if ngeF
as(S7%, (B3(ng),n,n) .87, (B3(ng).ne,n) . 6) if nyeF
as(8h, (B3(ng),nen) , 8%, (B3(ny),ne,n) 7)) if npeF
a3(S%, (B3(ny),ne,n) , Sty (B3(ng), ne,n),8) if nyeF
as(S7, (B3(ng),me,n) .87, (B3(ng).ne,n) ,9) if nye F
a3(87, (B3(ny),ne,n) , B3 (ny), 10) if nyoeF
as(S%, (B (np).mem) BE(n,). 10) i ongeF
B(ng) if nyeF
B3(ny) if npeF

By Lemma [1.2{S7, is Prim. Rec.

nt¢7'
ng €T

’n,tET
ny €T
neT
n €T
ng €T
ngeT
ng €T
’n,tET
ng €T

and
and
and
and
and
and
and
and
and

and

IE]:, ntzrtjeT

Bi(ne) = 4
B3(ng) =5
Bi(ng) =6
Bi(ng) =17
Bi(ny) = 8
Bi(ng) =9
Bi(n,) =10 and Bi(ny) #
B3(ny) =11 and B3(ny) #n
B3(ny) =10 and B2(ny) =n
B3(ny) =11 and Bi(ny) =n

O

We will now define a way of coding (finite) sets of formulas. We will not really encode the set,

Arithmetic 147

but some finite sequence of formulas, because we will not care about the ordering of such a
sequence, even if what we really encode is the sequence, we will handle it as if it were a set.

Definition 1.3: Coding and decoding sequences

We define both © ' : N<“ — N and :N? — N by

Where II (i) enumerates the prime numbers’}
And

— px <n ()" does not divide n.

I (0) = 2;11 (1) = 3;I1(2) = 5; etc.

Notice that for all i < p we have "ko.....k,""" = k;. Furthermore, for every formula ¢, the inte-
ger is strictly positive. Therefore, given any sequence (ko, ..., kp) € N<¥if "ko.... .k, =0
then we know for sure that k; does not code a formula.

We will say that the integer 1 codes the empty set — which is also an empty set of formulas —
and another integer codes the set A = {pg, ¢1,...,pp} if this integer is of the form II (ig)

(i) 7 - T ()

Definition 1.4: G6del numbering of the L 4-finite sets of formulas

The Godel numbering of any set A = {¢o, ¢1,...,¢p} of L4-formulas is any integer of the
form

A= 1 it A=,
= II(ip) " -TL(dy) 7" ---TL(3p) otherwise.
with {ig,...,4,} and A having the same cardinalityﬂ

We denote Cp,, () the set of codes of finite sets of formulas:

Cpp (F) = {"A"] A is any finite set of L4 formulas}.

“This means Vj,k <p (j #k — ij # ir).

148 EPFL Godel & Recursivity

Lemma 1.13

The set Cp,, () of codes of finite sets of formulas is Prim. Rec.

Proof of Lemma m:

1 af n=1
Xep, () =4 1 i n#l and Vi<n [7'>0 — e F|
0 else.
O
Lemma 1.14
There exist two Prim. Rec. functions Renm. : N2 — N and Ay : N2 — N such that
Audel if m=peF and m="A€eCp, (5
Aga. (n,m) =
0 if n¢F or m¢ Cpﬁn_(f)
Adptt if n="p'eF and mz'A'eCpﬁnl(;)
Rem. (n7 m) = .
0 if n¢F or méCp, ()
Proof of Lemma m:
We have both
0 if n¢gF or mé¢Cp, ()
Add. (nam) = . n . roA rA7
m‘H(,uzém =0) if o =neF and A =meCp, ()
and
0 if n¢F or m¢ C’pﬁn'(]-j
Rem. (n,m) =4 ™ if neF and meCp, () and Vi<m #n
[]‘[(mgmm =n)n] if neF and meCp, () and JFi<m =n

Arithmetic 149

Lemma 1.15

The set

Tos = {(;ﬂ,w)eNQ | e F, A eCp, (r) and weA}

is Prim. Rec.

Later on, we will use a relation-like notation and write "' Z,s "A" instead of ("¢',"A") € Zys..

Proof of Lemma m:
We have
I1(¢)" divides m
1 1 neF and meC and Ji <m and
Xz, (n,m) = / Pin. ()

I1 ()" ™ does not divides m

0 else.

O

Lemma 1.16

The following set

Equ. = {(rrﬂ, A eN?| T eCp, (7)) A €Cp, (5 and T = A}.

is Prim. Rec.

Notice that the equality “ I' = A” is between two sets, therefore it relies on extensionality. We
will use a relation-like notation and write "' &, 'A' instead of ("¢, "A") € &

Proof of Lemma

We have

1 if nmeCp, (7 and Vi< max(n,m) (i€ F— (i Ins. noiLps. m))
xe,, (n,m) =

0 else.

150 EPFL Godel & Recursivity

]
Lemma 1.17
There exists a Prim. Rec. function U,;on € N (V) such that
{ 0 Zf n ¢ Cpﬂn_(]:) or m ¢ Cpﬁm.(]:)
union (n7 m) =
O if n="1"€Cp, (5 and m="A€Cp, (5 and 'O & T UA"
Proof of Lemma
We first define f € NN by recursion:
f(r,én+1) = II(2n) " -UE@2n+1)" - f(y,d,n).
Then we set
unio’n (77 5) = f(’)/a 57 maX<77 5))
Union (n,m) = f(n,m,max(n,m)) if neCp, (ry and meCp, (7
= 0 otherwise.
]

Definition 1.5: G6édel numbering of the £ 4-sequents from sequent calculus

The Godel numbering of any sequent I' - A is
r]:‘ FA—I :a2(rr'l’rA'l)
We denote SO the set of codes of sequents:
SQ={TF+A"|T, A finite sets of L 4 formulas}.

Given any integer n we use the notation ‘n for 51(n) and "n for 52(n). This way,

ifn="TF A", then'n="T"and "n="A".

Arithmetic 151

Lemma 1.18

The set SO of codes of sequents of sequent calculus is Prim. Rec.

Proof of Lemma [1.18:

1 Zf l?’L € Cpﬁn‘(]:) and "ne Cpﬁm(]:)
xso(n) =

0 else

We will now denote AX the set of codes of axioms of sequent calculus which are not to be
mistaken for the axiom of Robinson arithmetic.

Definition 1.6: G6del numbering of the axioms of sequent calculus

Ax ={as(27,27) | v e F.

Lemma 1.19

The set AX of codes of axioms of sequent calculus is Prim. Rec.

Proof of Lemma [1.19:

1 if ‘n="n and eFandVi<n =0

0 otherwise.

Xax(n) = {

5.2 Coding the Proofs

We recall that a proof in Sequent Calculus is a tree of the form

152 EPFL Godel & Recursivity

7¢ l_ 1/} /wkn] 7§0 l_ ()0 aIWknr
K A 2l el 2%
=YY Py

0, =Y — = =P

r

Y= =

where the shape of the tree is controlled by the rules of Sequent Calculus.

We are now ready to define for each rule of the Sequent Calculus, a set of tuples of codes of
sequents that satisfy the property that the rule defines.
We will successively define

Definition 2.1

(1) o Ru<SN

(2) o R,, SN2 o Ra, c N? o Ry, € N? 0 Retry,, S N?
© R/\ZQ = N2 © R\/rl = N2 © ,Rflr = N2 o Rcut < N2
o R-, € N? oR,,, SN2 0 Rupn S N o Rpep S N?
o va c N? o 'Rﬂr c N? o kanr c N? o 'RRefE N2
(3) oR, cN o R, N3 o R, SN

and for each of them, the fact that it is Prim. Rec. will derive from its definition. We first recall
what the rules are.

Arithmetic

153

Sequent Calculus

Axioms

ax

pEyp

Logical Rules

LA Ly A I'-p A I'=9,A
Loonp = A Loonp=A L' pnyg, A .
T A TprA T, A U, A
T,ove - A THovg,A " TroevpA
'@, A Ly A Loy, A
Fo—yp A L' 9=y, A
'@, A Lok A
I—pkFA T--—p,A '
F:@[t/w] = A 1 . I'= SO[y/$]7A v
Ve oA I'—Vr o A2
L, @y = A b opp A
I3z o - A2 'z p, A
Lot=t-A L t=s, P[s/a]s Ple/z) H A N
I'-A P,S:t,QO[t/x] A '

Structural Rules
' A

wkny ————— wkn,

'@, A

'-p,0 A

ctry ——— ctrp

F'p A

I'-p, A

Cut Rule
oA

cut

LIV = AA

Yfor ¢ a term

2for y a variable with no free occurrence in the sequent concluding the rule (not in I'; 3z ¢ nor Va ¢, nor A)

154 EPFL Godel & Recursivity

ar

Py

DeR,y — De AX

wr oo, , 1 o' !
o o A1 stands for “ as('p', 0, 6)7.

o “3'v' <k Oyl stands for “3In <k (n eF A G[R/y])” and more generally

2

o “Fp' <k 300 <kn O o ye stands for
(Brp) e F A BL(p) <ki) A Ogr)mn,b2)/va))”-

Arithmetic 155

_yp-aA
Dony A
(U,D)e R,
<
UeSQ
and
DeSO
and
9 "U &u. "D

and

Zns U and Tps. 'D
30 <U Iy <D and
L R, (01,10 Epu Rem. (0 7 0",'D)
LA LyrEA I
FoveyrE A '
(U, Up,D) e Ry,
S
U,U,,DeSQ
and
"Up . "Ur Egu. "D
9 and
Tps. 'U; and Tps. ‘U, and Tps. 'D
Iy <o 30 <o, and
(Rem. (1,'01) Equ. Rem. ("0, 'Ur) Equ. Rem. ('D)

156 EPFL Godel & Recursivity

I'=p,A Ly=A
Fo—yrA

(U, Uy, D) e R_,,

—
U,U.,DeSQ
and
"Up Equ. "D
and
Tns. "U; and s ‘U, and s 'D
$ and
Rem. ((0',"U1) Equ. "Up
I, <0 3 <0, and
Rem. (,ZUT) Equ. U, Equ. Rem. (,ZD)
and
Rem. (0",'Ur) Equ. Rem. (,'D)

o where “ A &, B & C7 standsfor “A &, BandB &, C’

L'+, A
I—-prFA
(U,D) e R-,
<
U DeSQ
and
3 Tns. "U and Zus 'D
3 <"U and
L Rem. ((0,"U) Eu. Rem (,lD)

Arithmetic 157

Ly @lt/en) A
T Vi, o - A

(U, D) € va

U/DeSQ
and
"U Equ. "D

and

< or

Zus. 'D
and
(,n) € (]-"m v F zbound)
and
Tns, U
and
(0t n) Tes U
and

| Rem. (0,'0) Equ. Rem. (,'D)

o “dn<TU 3 <"U ... stands for

In<!D 3 <!'D 3t <U

“In<"U Im<"U (mef A B3(m)=10 A B3(m)=n A Bi(m)= A ...)”
o stands for “ 33 ()”

o “J¢ <U ... stands for ¢ v < lU(v eT A ...)”

158 EPFL

Godel & Recursivity

U ey /en) H A

where

El]
I3z, o A2
(U, D) € 'Ral
<
UDeSQ
and
"U Equ. "D
and
32" Tps. 'D and W T U
and
('z",k) € F/upree and (k: #n— (‘z",n) € (-7:)(1 Uf/zwm))
and
as(ST, ("0, ey k) yn, 11) = Ha,0°
and
Rem. (‘ L "7ZU) gqu. Rem. ('E"'//,\TlalD)
and
o l o 1 s a7l
T2, <D 32, <WU 330,0° <D 30 <WU vo'<'D (” Tns. 'D = (0, k) & (Fra, © Fra, ””“”d))
and
v <"D (I’v InsA "D — (";‘>k) € (]:er v]:/zk bound))

or
Ty T 'D and ' Tps 'U and
(‘ L "7]“) € (-FXxk v Fray, bound) and (I"Ivn) € (]:Xac Y]:/zbound)
and az("',n,11) = "Jr,0" and
Rem. (‘ ("7ZU) gqu. Rem. ('E"'u,-‘lalD)

o “dn<<"U I'Vu,p <TU ...” stands for

“In<U Im<"U <m€]: A B3(m) =11 A B3(m)=n A Bi(m)="0" A ...)”

r o1 1/7 X N
o “ ' stands for ¢ ﬁ3(V0)”

o “3Ix;," <! .. stands for “ Ik < lU(ry[:;f1 =a3(k+1,0,0) A ...)”

221 has no free occurrence in T, 3z, ¢ and A

Arithmetic 159

Dit=tFA
I'-A

(Ua D) € RRef

<
UDeSQ
and
"U Equ. "D
< and
Tns U
It <lU and
k Rem, (1 = 1,1U) &, 'D
Lot = 8, 01s/an] Pltfen] - A .
Lys =140/, b A
(U,D) € REep
<
(U,DeSQ
and
"U Egu. "D
and
Tns U
and
(708 n) Tns. 'U and ST, ("0, "t,n) Tps. 'U
and
31 <W IS <WIn<U I <UY Ins.'D and Sy, (0,1 ,n) Tns 'D
and
Rem. (8%, ("¢, n), Rem. (' D))
Equ.
Rem. (Sgp. (05" ,n), Rem. (87, ("', "t',n), Rem. (10)))

160 EPFL Godel & Recursivity

I'i=@, A I'=vy,A
oAy, A

Ar

(U,Up,D) € R4,

<
(U,U.,,DeSQ
and
Wy Egu. Uy Equ. 'D
< and
Tns. "U; and Tns. "U,. and Tns. "D
o <"U Y <70, and
Rem. (¢0,"U1) Equ. Rem. (V7,"Ur) Equ. Rem. (,"D)
'@, A -
F'eviy, A
(U,D)e Ry,
<
(U DeSQ
and
U &u. 'D
4 and
Tns. "U and Tns. "D
3 <"U 4 <"D and
Rem. ((0,7U) Eu. Rem. (,"D)

Arithmetic 161

_Teva
'-pvay, A
(U,D)eR,,,
<
U,DeSQ
and
WU &u. 'D
1 and
Tns. "U and Tns. "D
I <TUI ' <D and
k Rem (0'"U) & Rem. (2 v 0.7 D)
Loy, A)
F'p—-vy, A

(Ul, UT') D) € R_’r

—
(Ul,Ur,DESQ
and
Tns. 'U; and Tns. "Ur and Tns. "D
{ and
3y <oy 3 LU, Rem. ("0,"Ur) Equ. Rem. (,"D)
and
Rem. (0, 10)) &g 'D

162 EPFL Godel & Recursivity

ok A -
' -, A
(U,D)e R-,
<
([U,DeSQ
and
Ty 'U and Zus. "D
4 and
10 <U Rem. (0", 'U) Epu. 'D
and
Rem. (0,7 D) Equ. "U

Arithmetic 163

T

'V, ¢, A?
(U? D) € RV’I‘
<
UDeSQ
and
W & 'D
and
Va Ins. "D and W Ths "U
and
('['Ivk) € -F./;tfrﬁﬁ and <k #n — (‘1"./77,) € (]:)(z U-F/J;bound))
and
a3(q]‘r};‘ (‘[“a r-r7117k) 7n711) = "Vz, 7\‘
and
Rem. (‘ ¢ "7TU) gqu. Rem. (‘ ﬁ-"«{er)
and
32, <™D 3’ <TU 3,0 <TD 30 KU vOsTD (” Tns. "D = (0,0 € (Foa v Fom, ””“""))
and
v <"D <")‘ InsA "D — (‘(;ny) € (-FXTk o]:/zk bound))

or
Vi, Ins. ™D and "' Tps. U and
("' k) € (Frap U Fray, bound) and ("0",n) € (Fxo U Frasouna)
and az('v',n,11) = "Vr,0" and

Rem. (“ ‘7TU) gqu. Rem. (‘ ﬁ-"«{er)

where
o “In<"U IV, <"U ...” stands for
a

“In<"U Im<<U (me]—" A B3(m) =10 A B3(m)=n A Bi(m)="0" A ...)”

r o1 1/) N
o “ 'y’ stands for ¢ B3(VT)”

o “I'z," <TU ... stands for “ Ik < TU(r:r;f =as(k+1,0,0) A ...)”

221 has no free occurrence in I, Vx, ¢ and A

164 EPFL

Godel & Recursivity

U,DeSQ
and
U &u. 'D

and

o “dn< U 4 <"U ..

' opza)y A ;

'~ 3dz, ¢, A

r

In<"™D 3 <'D 31'<"U

(U’ D) € Rar

—

stands for

Tns. "D
and
(,n) € (]:x:r U F mbound)
and
Tns."U
and
(ot n) Tys "U

and

Rem. (,TU) gqu. Rem. (7TD)

“In<"U Im<"U <m€]: A B3(m)=11 A B3(m)=n A Bi(m)= A ...)”

o stands for “ 33 ()

o “Jt'<TU ... stands for “ v < TU(’U eT A

Arithmetic 165

<
(U,DeSQ
and
"U Equ. "D
4 and
Zus. 'D
3 <!'D and
Rem. ((0','D) &Eu. 'U

<
([U,DeSQ
and
U &u. 'D
and
Lns. "D
3 <"D and
Rem. ((¢',"D) &, "U

166 EPFL

Godel & Recursivity

Dppk-A g0, A
Lok A F'-p, A

((U,DeSQ
and
— U & 'D

and
| "U &u. "D

(U,D)eR

ctr &

-, A T oA
O,IV = AA

cut

(Ul7 UT7 D) € Rcut
<

([U1,U;,DeSQ

and
Tns. "U; and Ts. ‘U,
and
30" <0 Union (Rem. (2','0,),'U1) Equ. 'D
and

union (Rem. (7TUl)7 TU’V‘) gqu. "D

Arithmetic 167

We use the following notations:

Notation 2.1

o RY =R

o R _ Ragy URA) UR-, URy, UR3, URy,; URy,, UR-, URy,
o REIT o kanl Y kanr Y Rctrl&T v RRep v RRef U Reut

o R*=R,, UR,, URA,.

We say an integer codes a proof if it is of the form

ay(root,left proof-tree,right proof-tree,arity of the rule).

Definition 2.2

The set Poofs of the codes of all possible proofs is defined by

k= 044(711,%2,713,1%4) € 7)’/‘oofs

<
(ny =0 and n3 =0 and ng =0 and ny e RO
or
{ ng=1 and n3z3=0 and n2 € Prooss and (ﬁi(ng),nl) eR!
or
(na =2 and n3 € Proofs and ng € Proops and (ﬂi(ng),ﬁi(ng),m) e R2.

Notation 2.2

Given any proof P we write "' for the integer described above that codes this proof.

168 EPFL Godel & Recursivity

Lemma 2.1

The set Proofs is Prim. Rec.

Proof of Lemma IE

1 if Bin) =0 and B}(n) =0 and B}(n)=0 and Bj(n)eR°
1 if Bin) =1 and Bi(n) =0 and XProoss (ﬂf(n)) =1 and (,Bi o B%(n), B} (n)) e R!
1 if Bi(n) =2 and XProofs (B3(n)) = XProofs (B3(n)) =1 and (B}oB3(n),B10B3(n),Bi(n)) e R

0 otherwise.

XProofs (n) =

By Lemma Proofs is Prim. Rec.

5.3 Undecidability of Robinson Arithmetic

Since Robinson Arithmetic is some very weak theory, one might think that it should be easy to

solve any question posed in such a theory. To the contrary, it turns out that Robinson Arithmetic
is undecidable.

Definition 3.1

(1) A theory T is recursive if the following set is recursive:

r
@

(2) A theory T is decidable if the following set is recursive:

ngT}.

thms (T) = {';' | T <p}.

Informally, this means that a theory is decidable if one has an algorithm (in fact, a Decider)
which on any input that represents a formula ¢ stops and accepts if T' proves ¢, and stops and
rejects if T does not prove .

Arithmetic 169

Theorem 3.1

Given any L 4-theory T, the set
{(r}’",)€ N2 | P is a proof of T . <p}
is
o primitive recursive if 1" is primitive recursive,

o recursive if T is recursive.

Proof of Theorem E

First, P is proof that T |, ¢ if P is a proof-tree whose root is some sequent “A ¢” for
some finite A < T'.
We recall Lemma [1.10 which stated that the following set is Prim. Rec.
F ciosed = { | ¢ is a closed formula from EA}

Second, let x7 € N — N be the characteristic function of T. i.e.,

(n) 1 if n= eT

n) =

XT 0 otherwise.

The characteristic function of
A:{('P',)EN2|PZ'5 a proof of T+, go}

is

170 EPFL Godel & Recursivity

n € Proofs
and
meF
and
1 i] vi<!Bin) #0 — xr() =1
and
Vi< Bi(n) (=mv =0)
and

37 < "Bi(n) =m

xa(n,m) = <

0 otherwise.

We see that this function is primitive recursive if xr is primitive recursive, and total
recursive if yp is total recursive.

O

Proposition 3.1

Given any L 4-theory T,

{ | e T} s recursive = { | T go} is recursively enumerable.
Proof of Proposition E
We set
Az{(rpj,)EN2|Pisapr00fofT . cp} and Bz{ | T go}.
By Theorem the set A is recursive. Hence the function
G =1= (1= (ak xathn) =)
is also Part. Rec. and it satisfies n € B < x'3"(n) = 1. O

We recall that a theory is complete if it satisfies both

Arithmetic 171

(1) T A L (i.e., T'is consistent)

(2) for every formula @, either T -, ¢ or T . —¢ holds

Corollary 3.1

Let T be any recursive L 4-theory.

If T is complete, then T is decidable.

Proof of Corollary IE

By Proposition [3.1] both sets

{]Tl—cgo} and { |Thw}

are recursively enumerable. Since T' is complete we have

{e1The} ={v 1Tk —p}

Hence
N\{ T @}z(N\}")u{ T -, w}

is recursively enumerable, which yields the result. O

Now we come to the main result of the chapter. Godel’s first incompleteness theorem will be an
immediate consequence of this undecidability result.

Theorem 3.2: Undecidability of any consistent recursive extension of Rob.

Let T 2 Rob. be any L 4-theory.

If T is consistent, then 7" is undecidable.

Notice that Theorem [3.2] could also be stated:
Let T be any L 4-theory which extends Rob.,

T is consistent <= 7T is undecidable.

Because if a theory T is inconsistent, then it proves everything, therefore we have

{¢IT = o} =7
which makes T decidable.

172 EPFL Godel & Recursivity

Proof of Theorem

Towards a contradiction, we assume that T is decidable (i.e, { VT R w} is recursive).
We then consider

F 20 tyree = {r‘f | ¢ is a formula whose only free variable is :Uo}.
Since we already know that the set
Frome ={(0'sn) | ¢ is a formula from L4 and x, is free in p}

is Prim. Rec. (see Lemma and we have

I7:I e‘/_-:/l‘o \free A (I;I70) E‘F/I‘f'ree a/nd Vn< I?‘:I <n7£0_) (IYA'I7n) ¢J_-:/(Bf7“ee>'

an immediate consequence is that F, ., free is also Prim. Rec.

Then the setd
{(rfj’n) | rv; IS]:/xo \free and T (p[n/$0]}

{(';',n) | "' € Fra free and Sib.(';',rn",O) € {z | T zp}}
1S recursive.

We then consider the following set
,Dz'vag. = {k eN | (k7k) ¢ {(I;I7n> ’ IT:I € ‘/_-:/1'0 Ifree and T l_c @[n/xO]}}
i.e. for any integer k£ we have:
k¢ D;ag, — k="p'€Fy yree O T o Q1 /o]
which is exactly

k¢ Diog = k= '€ Frag free and T = SO[S""‘SO/WO]'

D;ag. is clearly recursive. Therefore, by Theorem there exists some formula = (x¢)

(with z¢ being the only free variable) that represents D;ag,.

Arithmetic 173

This means that for all £ € N we have:

0 k€ Digg. = Rob. . @epp

o k¢ D;ag. = Rob. Pk o]
In order to get a contradiction, it is enough to consider the closed formula PEI - o] where

o —_—

['o-"] stands for the term S...S0.

Indeed, as with the Halting problem, where we asked the question whether our machine
would stop on its own code as input, here we ask the question whether or not 7" proves

P . This depends on whether "©:' belongs to D;ag, or not.

2 "/zo]

DU by def. of D;g_
o represents Liqq. since 1" 2 Rob. —
r 1 © > — — r_.n v

o "v:' € Digy = Rob. - Colr o] = T R T # Diag.

© "¢ # Diag. = Rob. b ~pryp) = T b 0y

o
¢

v v
¢ since T' 2 Rob.
@« represents Diag4

> T |7Lc QDLZ [[r,-""vl/x()] — 7: 1= Diag.
) —_——
since T is consistent by def. of ’D;ag'
We obtain . .
rv:"j € Diag. Aaand rr""j ¢ Diag.'

O]

“olt/en]t i ne="p eF, ny="t"eT

“we recall that on page [145|we defined 87, (nu,n:,n) =
0 otherwise .

This brings to the mind what we did in the proof of Proposition

We propose again a picture that illustrates this diagonal argument. If (¢;)en is a enumeration
of all the formulas with zg as one and only free variable, we make sure to define a formula which
satisfies this requirement although it is none of them.

174 EPFL Godel & Recursivity

¥0 Y1 P2 ¥3 P4 ¥5 $n
0 1 1 0 1 0 0
1 1 1 0 0 0 0
1 0 1 0 0 0 1
0 0 1 0 1 0 0
0 1 0 1 1 1 0
1 1 0 0 0 0 0
1 0 0 0 1 1 1

There is a 1 on the array — for instance on row 3 and column 2 — if ' . ¢a([»3']), and there
is a 0 — for instance on row 2 and column 5 — if T' 14 5([¢2']).

Now if T is decidable, the whole array is decidable. This means there is a Decider that on any
input (n, m) accepts if there is a 1 on position (n,m), and rejects if there is a 0. Furthermore, for
the whole array is decidable, its diagonal is also decidable. Hence the complement of the diagonal
is decidable as well. Finally, since all recursive sets are representable, the complement of the
diagonal is represented by some formula among the enumeration — say ¢, — which inevitably
stumbles on [',,']).

Arithmetic 175

5.4 Undecidability of first order logic

Theorem 4.1: Undecidability of first order logic

The following set is not recursive:

{ | = <p}-

Proof of Theorem IE

Since Rob. is a finite L 4-theory, we let prqp. be the conjunction of the seven axioms from
Rob.. For any formula v we have

ROb‘ |_c 1/’ < Prob. l_c ¢ = |_c Prob. — 1/)

e{ | Rob. +. <p} — e{ | cp}.

Therefore, if the set of codes of universally valid formulas were decidable, then Robinson

arithmetic would also be decidable.
O

5.5 Godel’s 15t incompleteness theorem
Everything is now ready to prove the first incompleteness theorem in a couple of swift moves.

Theorem 5.1: Gédel’s 15t incompleteness theorem

If T 2 Rob. is any recursive L 4-theory, then

T is incomplete.

Proof of Theorem E

We prove the contrapositive. If T' is complete, then T is consistent. By Theorem T
is then undecidable. Corollary states that every theory which is both recursive and
complete is decidable. Therefore, T' is not recursive.

176 EPFL Godel & Recursivity

Another way of stating this theorem (very common among philosophers) is the following:
There exists a true sentence that is not provable.

Or even,
There exists a sentence that is true although it is not provable.

“Provable” usually refers to Peano Arithmetic, and “true” means true in the standard model.
And very often people add

“ Taking this true sentence as an azxiom inevitably yields another one that is not provable. ”

Of course the understatement hidden behind this assertion is that “the complete theory of the
standard model is not recursive”.

To put it in our language, what these philosophers do is they consider some theory T 2 Rob.
(usually they take Peano Arithmetic). This theory being both consistent (since they presume
it is satisfied inside the standard model N) and recursive (that criterion is often omitted), it is
incomplete by Godel’s 15 incompleteness theorem, there exists some closed formula ¢ such that
both T t£, ¢ and T t£, —p. If N = ¢, then ¢ is the formula they have in mind, and if N g ¢,
then —¢ is the formula they have in mind.

The assumption “taking this true sentence as an axiom inevitably yields another one that is not
provable ” simply refers to the fact that for any closed formula ¢ such that N = ¢ holds, and
any recursive theory T such that N =T holds as well, we have

(1) N=T u {p}, hence T U {¢} is consistent,
(2) T v {p} remains recursive.

Therefore, T U{p} is another incomplete theory, which yields another formula 1 such that T £
and Tt = but N = 1.

	Introduction
	I Recursivity
	Towards Turing Machines
	Deterministic Finite Automata
	Nondeterministic Finite Automata
	Regular Expressions
	Non-Regular Languages
	Pushdown Automata
	Context-Free Grammar

	Turing Machines
	Deterministic Turing Machines
	Non-Deterministic Turing Machines
	The Concept of Algorithm
	Universal Turing Machine
	The Halting Problem
	Some Other Undecidable Problems
	The Post Correspondence Problem

	Turing Machine with Oracle

	Recursive Functions
	Primitive Recursive Functions
	Variable Substitution
	Bounded Minimisation and Bounded Quantification
	Coding Sequences of Integers
	Partial Recursive Functions

	II Arithmetic
	Representing Functions
	Robinson Arithmetic
	Representable Functions

	Gödel's 1st Incompleteness Theorem
	Gödel Numbers
	Coding the Proofs
	Undecidability of Robinson Arithmetic
	Undecidability of first order logic
	Gödel's 1st incompleteness theorem

	Gödel's 2nd Incompleteness Theorem
	Peano Arithmetic and I01
	The Arithmetical Hierarchy
	A First Glance at Gödel's 2nd Incompleteness Theorem
	The Core of the Proof

	Some Other Related Results
	Tarski's Undefinability of Truth
	Recursive Countable Models of Peano Arithmetic
	Gödel's 1st Incompleteness Theorem is Provable in RCA0
	Presburger Arithmetic
	Real Closed Fields
	Hilbert's 10th Problem

	Bibliography

